Graphite Plate - Synthetic, Vibration Molded, Pack Of 10 PCS

SKU:
E-Gr-7x7x1-10p
SHIPPING:
Piece
IF YOU ARE INTERESTED IN A QUOTE FOR A LARGE QUANTITY, PLEASE CONTACT US
Email: Marknanossr@gmail.com
or
Get A Quotation

Graphite Plate - Synthetic, Vibration Molded, Pack Of 10 PCS

Piece 1
Request a quotation.

Contact Us

Global Head Office

Email: Marknanossr@gmail.com

Tel:+86 15606950920

Wechat: 15606950920

Address:  Building 1, No. 39 Xinchang Road, Haicang District, Xiamen City, Fujian Province, China

Graphite Plate - Synthetic, Vibration Molded, Pack Of 10 PCS

Buy Redox.me products from NANOSSR at the best value.

Graphite, a naturally occurring form of carbon, is renowned for its excellent electrical conductivity and robustness. Characterized by its layered structure with carbon atoms arranged in a hexagonal lattice, graphite is a versatile material widely used in various applications, including electrochemistry.
When used as an electrode in electrochemical studies, graphite provides a unique combination of properties, such as cost-effectiveness, ease of surface renewal, and a higher effective surface area due to its porous structure. Graphite is commonly used in electrochemical measurements as a cost-effective, readily available counter electrode.

While both graphite and glassy carbon are invaluable electrode materials in electrochemistry, there are situations where graphite particularly shines. Graphite is inherently more cost-effective, making it a favorable choice for preliminary studies, bulk experiments, or applications where budgets are tight. Its porous structure often translates to a larger effective surface area, which can be advantageous in assays requiring increased sensitivity. Furthermore, graphite's ease of surface renewal ensures consistent measurements across experiments, as it can be easily polished between uses.

Examples of use:
1. Electroplating: Due to its cost-effectiveness and porous nature, graphite is an efficient substrate for metal deposition in electroplating processes.
2. Bulk Electrolysis: For processes that require a significant quantity of electrode material, like bulk electrolysis, the affordability of graphite makes it a preferred choice.
3. Educational Settings: Graphite's durability and cost-efficiency shine in academic laboratories, especially for student experiments where cost and robustness are crucial.

Application note

1. Preparation: Ensure the graphite electrode surface is clean and contaminant-free. Due to its relatively soft nature, the electrode surface can be easily mechanically polished between uses to renew its surface.
2. Installation: Fit the graphite plate electrode into your electrochemical cell setup. Ensure a secure connection to your potentiostat to record accurate measurements.
3. Measurement: Graphite electrodes can be employed in a wide array of electrochemical techniques. Given its porous nature, ensure the electrode reaches a stable background current before recording measurements.
4. Maintenance: After usage, rinse the electrode with appropriate solvents and store it in a dry place. Regular polishing with alumina or abrasive paper might be needed, depending on the nature of the experiments.

Specification

Material: synthetic polycrystalline graphite
Manufacturing process: vibration molding
Dimensions: 5×5, 7×7, 10×10, 15×15, or 50×50 mm2 (custom sizes available upon Request)
Thicknesses: 1, 2, or 3 mm
Density: 1.75 g/cm3
Electric resistivity: 8 µΩ·m
Flexural strength: 17.5 MPa
Compressive strength: 38 MPa
Medium grain size: 800 μm
Thermal conductivity: 140 W.mK-1
Coefficient of thermal expansion: 2.4×10-6 K-1
Ash content: 500 PPM

Product Includes

10 x graphite plate

€ 4.00
GRAPHENE SHEET
Recent Posts

Future Communication with 5G Technology and Advanced Materials

Preserving History with the Power of Graphene
Future Communication with 5G Technology and Advanced Materials 5G technology opens the doors to a new era in communication with faster connection speeds, low late...

5G technology opens the doors to a new era in communication with faster connection speeds, low latency and wide coverage. This new generation technology enables important applications in many sectors...

​Graphite Applications on Anti-friction Coatings

Preserving History with the Power of Graphene
​Graphite Applications on Anti-friction Coatings Graphite is said to be known as one of the forms of carbon present in usually crystalline form. Thi...

Graphite is said to be known as one of the forms of carbon present in usually crystalline form. This too has various types and varieties in which graphite can be exhibited. However, recently it has c...

Cuprous (Copper) Oxide Properties and Applications

Preserving History with the Power of Graphene
Cuprous (Copper) Oxide Properties and Applications Cuprous oxide is also commonly known as copper oxide which is basically an inorganic compound compr...

Cuprous oxide is also commonly known as copper oxide which is basically an inorganic compound comprising of copper and oxygen. It has some excellent properties that enable it to surpass a lot of copp...

Cellulose Nanocrystals (CNC), Applications and Properties

Preserving History with the Power of Graphene
Cellulose Nanocrystals (CNC), Applications and Properties Cellulose is a very abundant polymer naturally available as it is a vital component present in vari...

Cellulose is a very abundant polymer naturally available as it is a vital component present in various plant cell walls. Besides, cellulose nanocrystals (CNC) also found in every other species all of...

Ketjen Black Applications As a Superconductor

Preserving History with the Power of Graphene
Ketjen Black Applications As a Superconductor Ketjen black is basically a conductive agent and conductive agents are usually used to make sure th...

Ketjen black is basically a conductive agent and conductive agents are usually used to make sure that the electrode possesses good charge and discharge performance. So ketjen black is responsible for...

​7 Reasons to Why Fullerenes are Growing Market

Preserving History with the Power of Graphene
​7 Reasons to Why Fullerenes are Growing Market Fullerene is a carbon allotrope consist of carbon atoms attached via single or double bonds.These m...

Fullerene is a carbon allotrope consist of carbon atoms attached via single or double bonds.These molecules have rich characteristics and potentially strong properties which enable them to work effec...

Molybdenum Disulfide (MoS2) Properties and Applications

Preserving History with the Power of Graphene
Molybdenum Disulfide (MoS2) Properties and Applications Molybdenum disulfide, also known as MoS2, is one of the best materials initially belonging to the t...

Molybdenum disulfide, also known as MoS2, is one of the best materials initially belonging to the transition metals.Its structure is unique hence all the properties it possesses are unique.  The buil...

From Graphene to the New Teflon

Preserving History with the Power of Graphene
From Graphene to the New Teflon Graphene is one of the most used materials in today's world and with all the exceptions that it is ...

Graphene is one of the most used materials in today's world and with all the exceptions that it is being used, it is being proven as one of the best materials for almost all industries.  Ever since i...

​Use of Graphene In The Textile Industry, Examples From The Market And Its Future

Preserving History with the Power of Graphene
​Use of Graphene In The Textile Industry, Examples From The Market And Its Future Graphene is known as a carbon allotrope in the industry as it comprises carbon atoms that are put t...

Graphene is known as a carbon allotrope in the industry as it comprises carbon atoms that are put together in the form of a lattice. Graphene is a highly necessary product in today's world as it is s...

IR Coating Technology and Applications

Preserving History with the Power of Graphene
IR Coating Technology and Applications IR coating technology is used for the optical coatings that perform their functions at a very large...

IR coating technology is used for the optical coatings that perform their functions at a very large scale. This includes UV wavelengths which are both short and long too. A lot of comprehensive studi...

Silicon Dioxide in Battery Applications

Preserving History with the Power of Graphene
Silicon Dioxide in Battery Applications Silicon dioxide is a promising material for next generation battery technologies because of its hig...

Silicon dioxide is a promising material for next generation battery technologies because of its high capacity and abundance. Especially Li-ion and Li-S batteries benefit from silicon dioxide and its ...

Properties of ​Ketjen Black as a Superconductor

Preserving History with the Power of Graphene
Properties of ​Ketjen Black as a Superconductor Ketjen black is basically a conductive agent and conductive agents are usually used to make sure th...

Ketjen black is basically a conductive agent and conductive agents are usually used to make sure that the electrode possesses good charge and discharge performance. So ketjen black is responsible for...

MoS2 Applications on Anti-friction Coatings

Preserving History with the Power of Graphene
MoS2 Applications on Anti-friction Coatings MoS2 is basically the chemical formula of molybdenum disulfide which is a compound known to be a tr...

MoS2 is basically the chemical formula of molybdenum disulfide which is a compound known to be a transition metal dichalcogenide having a blackish and silvery appearance. MoS2 is one of the categori...

​How to Sustainably Produce Nano Clays

Preserving History with the Power of Graphene
​How to Sustainably Produce Nano Clays Nanoclays, with their unique layered structure and nanometric size, are transforming industries by ...

Nanoclays, with their unique layered structure and nanometric size, are transforming industries by enhancing the performance of materials in packaging, automotive, and environmental engineering.  Th...

​10 Uses of Calcium Oxide in Daily Life

Preserving History with the Power of Graphene
​10 Uses of Calcium Oxide in Daily Life Calcium oxide is the chemical combination of calcium and oxygen subsequently forming a product that...

Calcium oxide is the chemical combination of calcium and oxygen subsequently forming a product that is rich in its characteristics and has an excellent set of properties that enable it to perform var...

​Cubic Boron Nitride Nanopowders: The New Diamond, Properties, and Applications

Preserving History with the Power of Graphene
​Cubic Boron Nitride Nanopowders: The New Diamond, Properties, and Applications Boron nitride is a chemical compound consisting of nitrogen and boron, having the chemical formula ...

Boron nitride is a chemical compound consisting of nitrogen and boron, having the chemical formula BN. It has various forms but the most common one is the cubic boron nitride form. It is actually a t...