Electrosynthesis Reactor E-Series/Septa, Divided Cell, 2X4-Port

SKU:
R-A-ECSYNTH_E/S
SHIPPING:
Piece
IF YOU ARE INTERESTED IN A QUOTE FOR A LARGE QUANTITY, PLEASE CONTACT US
Email: Marknanossr@gmail.com
or
Get A Quotation

Electrosynthesis Reactor E-Series/Septa, Divided Cell, 2X4-Port

Piece 1
Request a quotation.

Contact Us

Global Head Office

Email: Marknanossr@gmail.com

Tel:+86 15606950920

Wechat: 15606950920

Address:  Building 1, No. 39 Xinchang Road, Haicang District, Xiamen City, Fujian Province, China

Electrosynthesis Reactor E-Series/Septa, Divided Cell, 2X4-Port

Buy Redox.me products from NANOSSR at the best value.

Electrosynthesis Reactor E-series is a two-compartment batch cell that contains a solution of the substrates and reagents and it is operating for the time needed to complete the desired reaction until all the starting material in working electrode compartment is consumed. The electrolytes in working and counter electrode compartments are separated by ion-exchange membrane or nanoporous membrane (13 mm dia.). The reaction mixture can be stirred using a magnetic stirrer to have a homogeneous concentration throughout the working and/or counter electrode compartment.

In this reactor, a solid anode (positive) and cathode (negative) are installed in Tantalum clips. If a 3-electrode setup is required, the reference electrode is mounted in the working electrode compartment. Such electrode assembly is introduced into a solution containing the substrate and a supporting electrolyte, in order to carry the current through the cell separated by the membrane. 
The reactor elements are constructed with materials that are inert to most of the aqueous/organic reaction environments (PEEK, FKM/FFKM O-Rings). The construction of this reactor is liquid- and gas-tight.

Application Note:

This electrosynthesis reactor is suitable for both, constant current and constant potential electrolysis in aqueous or organic media. As this is a divided cell, it can be used when the substrate and product formed could react at the counter electrode, or with the products produced as a counter reaction.
Various anode materials are suitable for this reactor including: (i) noble metals such as platinum, platinum metals or their alloys, and gold, (ii) carbon allotropes such as graphitereticulated vitreous carbon or glassy carbon, (iii) Boron-Doped Diamond plate and thin film on a substrate, and (iv) other metals such as nickel, lead or lead oxide.
As the corrosive effects are not common in cathode materials, there is a wider variety of materials to choose including: (i) Boron-Doped Diamond plate and thin film on a substrate, (ii) platinum plate or wire and (iii) other metals such as copper, nickel, stainless steel, lead and tin.
Concerning the form of the anode and the cathode, the materials with a high surface-area-to-volume ratio are preferential. Copper and nickel are usually used in a form of foam, while the other metals are in a form of plates, meshes and wires.
Typical reference electrodes include Ag/Ag+ RE (organic media), Ag/AgCl (aqueous media) and pseudo-RE (Pt, Au, Ag).
None of the above mentioned electrodes is included in the reactor, so they need to be added to the quotation separately.

Specification:

Maximum electrolyte volume: 2 x 18 mL
Minimum electrolyte volume: 2 x 7 mL
Electrode plug diameter: 6 mm
Number of electrode slots: 8
Membrane diameter: 13 mm
Distance between anode and cathode: 23 mm
Maximum operational temperature: 200 deg C
Minimum operational temperature: -20 deg C
Septa size: ND9

Product Includes:

2 x lid
2 x septa holder
2 x electrode compartment
6 x plug
2 x plug with septum
10 x Tantalum clip
1 x set of O-Rings
1 x set of septum

Setup Includes

Electrosynthesis Reactor E-Series/Septa, 30 mm Od, Divided Cell, 2X4-Port

€ 4.00
GRAPHENE SHEET
Recent Posts

Future Communication with 5G Technology and Advanced Materials

Preserving History with the Power of Graphene
Future Communication with 5G Technology and Advanced Materials 5G technology opens the doors to a new era in communication with faster connection speeds, low late...

5G technology opens the doors to a new era in communication with faster connection speeds, low latency and wide coverage. This new generation technology enables important applications in many sectors...

​Graphite Applications on Anti-friction Coatings

Preserving History with the Power of Graphene
​Graphite Applications on Anti-friction Coatings Graphite is said to be known as one of the forms of carbon present in usually crystalline form. Thi...

Graphite is said to be known as one of the forms of carbon present in usually crystalline form. This too has various types and varieties in which graphite can be exhibited. However, recently it has c...

Cuprous (Copper) Oxide Properties and Applications

Preserving History with the Power of Graphene
Cuprous (Copper) Oxide Properties and Applications Cuprous oxide is also commonly known as copper oxide which is basically an inorganic compound compr...

Cuprous oxide is also commonly known as copper oxide which is basically an inorganic compound comprising of copper and oxygen. It has some excellent properties that enable it to surpass a lot of copp...

Cellulose Nanocrystals (CNC), Applications and Properties

Preserving History with the Power of Graphene
Cellulose Nanocrystals (CNC), Applications and Properties Cellulose is a very abundant polymer naturally available as it is a vital component present in vari...

Cellulose is a very abundant polymer naturally available as it is a vital component present in various plant cell walls. Besides, cellulose nanocrystals (CNC) also found in every other species all of...

Ketjen Black Applications As a Superconductor

Preserving History with the Power of Graphene
Ketjen Black Applications As a Superconductor Ketjen black is basically a conductive agent and conductive agents are usually used to make sure th...

Ketjen black is basically a conductive agent and conductive agents are usually used to make sure that the electrode possesses good charge and discharge performance. So ketjen black is responsible for...

​7 Reasons to Why Fullerenes are Growing Market

Preserving History with the Power of Graphene
​7 Reasons to Why Fullerenes are Growing Market Fullerene is a carbon allotrope consist of carbon atoms attached via single or double bonds.These m...

Fullerene is a carbon allotrope consist of carbon atoms attached via single or double bonds.These molecules have rich characteristics and potentially strong properties which enable them to work effec...

Molybdenum Disulfide (MoS2) Properties and Applications

Preserving History with the Power of Graphene
Molybdenum Disulfide (MoS2) Properties and Applications Molybdenum disulfide, also known as MoS2, is one of the best materials initially belonging to the t...

Molybdenum disulfide, also known as MoS2, is one of the best materials initially belonging to the transition metals.Its structure is unique hence all the properties it possesses are unique.  The buil...

From Graphene to the New Teflon

Preserving History with the Power of Graphene
From Graphene to the New Teflon Graphene is one of the most used materials in today's world and with all the exceptions that it is ...

Graphene is one of the most used materials in today's world and with all the exceptions that it is being used, it is being proven as one of the best materials for almost all industries.  Ever since i...

​Use of Graphene In The Textile Industry, Examples From The Market And Its Future

Preserving History with the Power of Graphene
​Use of Graphene In The Textile Industry, Examples From The Market And Its Future Graphene is known as a carbon allotrope in the industry as it comprises carbon atoms that are put t...

Graphene is known as a carbon allotrope in the industry as it comprises carbon atoms that are put together in the form of a lattice. Graphene is a highly necessary product in today's world as it is s...

IR Coating Technology and Applications

Preserving History with the Power of Graphene
IR Coating Technology and Applications IR coating technology is used for the optical coatings that perform their functions at a very large...

IR coating technology is used for the optical coatings that perform their functions at a very large scale. This includes UV wavelengths which are both short and long too. A lot of comprehensive studi...

Silicon Dioxide in Battery Applications

Preserving History with the Power of Graphene
Silicon Dioxide in Battery Applications Silicon dioxide is a promising material for next generation battery technologies because of its hig...

Silicon dioxide is a promising material for next generation battery technologies because of its high capacity and abundance. Especially Li-ion and Li-S batteries benefit from silicon dioxide and its ...

Properties of ​Ketjen Black as a Superconductor

Preserving History with the Power of Graphene
Properties of ​Ketjen Black as a Superconductor Ketjen black is basically a conductive agent and conductive agents are usually used to make sure th...

Ketjen black is basically a conductive agent and conductive agents are usually used to make sure that the electrode possesses good charge and discharge performance. So ketjen black is responsible for...

MoS2 Applications on Anti-friction Coatings

Preserving History with the Power of Graphene
MoS2 Applications on Anti-friction Coatings MoS2 is basically the chemical formula of molybdenum disulfide which is a compound known to be a tr...

MoS2 is basically the chemical formula of molybdenum disulfide which is a compound known to be a transition metal dichalcogenide having a blackish and silvery appearance. MoS2 is one of the categori...

​How to Sustainably Produce Nano Clays

Preserving History with the Power of Graphene
​How to Sustainably Produce Nano Clays Nanoclays, with their unique layered structure and nanometric size, are transforming industries by ...

Nanoclays, with their unique layered structure and nanometric size, are transforming industries by enhancing the performance of materials in packaging, automotive, and environmental engineering.  Th...

​10 Uses of Calcium Oxide in Daily Life

Preserving History with the Power of Graphene
​10 Uses of Calcium Oxide in Daily Life Calcium oxide is the chemical combination of calcium and oxygen subsequently forming a product that...

Calcium oxide is the chemical combination of calcium and oxygen subsequently forming a product that is rich in its characteristics and has an excellent set of properties that enable it to perform var...

​Cubic Boron Nitride Nanopowders: The New Diamond, Properties, and Applications

Preserving History with the Power of Graphene
​Cubic Boron Nitride Nanopowders: The New Diamond, Properties, and Applications Boron nitride is a chemical compound consisting of nitrogen and boron, having the chemical formula ...

Boron nitride is a chemical compound consisting of nitrogen and boron, having the chemical formula BN. It has various forms but the most common one is the cubic boron nitride form. It is actually a t...