Semiconductor Materials for Solar Cells


Both silicon and gallium arsenide phosphide is capable of absorbing visible light noticeably but it has been reported that gallium arsenide phosphide absorbs visible light within the course of generating less waste heat. On the contrary, silicone excels at converting energy from the infrared region of electromagnetic radiation of the solar spectrum beyond invisible light. Even though gallium arsenide phosphide and some similar semiconductor materials have been shown to function efficiently and are considered stable, they are regarded as costly and, not economical which is a critical factor in the solar panel design industry. This disadvantage causes the recently designed solar panel composed entirely from the combination of these two materials which is particularly not reasonable for mass production at the moment. In so doing, the use of low-cost silicon as a starting point is the basis of the current study.1


Fabrication of Cells


Within the course of fabrication, the defections with the material find their way into the layers more specifically at the interfaces between the gallium arsenide phosphide and silicon when tiny defects and imperfections from materials with different atomic structures are coated on silicon as layers consecutively, compromising the reliability and performance. Based on this project, a process for the formation of pristine interfaces has been developed within the gallium arsenide phosphide cell leading two a considerable improvement compared to the earlier works concerning the efficiency of solar panels. Upon finalizing this application, any utility company would be able to employ this technology to generate 1.5 times more energy compared to less energy generated when the same amount of the occupied land is used by solar farms, in addition, consumers of solar panels could find it advantageous and economical to use 1.5 times less space on rooftops for panels. However, there are still obstacles on the way to the commercialization of this project but it is hoped that energy suppliers, as well as consumers, would find value in using practically stable materials in order to achieve a boosted solar energy converter and electricity generator.


Types of Solar Cells


Solar cells could be classified according to the types of materials, processing, and the nature of materials employed in manufacturing the devices. In this order, solar cell types include crystalline silicon-based solar cells, thin film solar cells, quantum dot solar cells, and organic polymer-based solar cell. Technically, solar cells based on silicon wafers with commercial applications contain heavy metals such as Lead (Pb) and calcium (Cd) which are considered hazardous materials. Therefore, a class of organic materials emerges as valuable alternatives instead. In fact, polymeric materials and organic molecular agents adopt many advantages over other inorganic materials due to their physical properties capable of being tailored and easily manufactured and shaped into ultrathin films and sheets taking advantage of solution processing techniques with practically low priced materials in large-scale production.



To find out more, you can read Future of Solar Cells with Nanotechnology Solar Energy


Silicon for Solar Cells


Silicon is mostly used for commercial purposes with slight processing and purification including silica sand, stone, and clays. It engages in reactions with over 60 elements to produce different compounds. The main component of most semiconductors, cement, ceramics, and glass is silicon. Silicon is a significant component of steel and is commonly used in bricks for the construction industry. Based on silicon’s metalloid nature, the intermetallic compounds of silicon are used in alloy industries to make them resistant to metals like copper, magnesium, and aluminum. The higher assays of 99% in metallurgic silicon have applications in silicon resins, seals, and oils. Thin silicon crystals are used in the photovoltaic cell to directly conserve energy in solar cells and piezoelectric glasses take the advantage of silicon crystals. The most common crystalline form of silicon was prepared by electrolyzing aluminum chloride and sodium chloride along with 10% silicon. Since this method was a bit expensive, a more cost-effective was developed later. The chemical research on crystal silicon production kept on which led to the discovery of volatile silicon hydrides, synthesized silane, and trichlorosilane. It was in the 20th century that the structure and composition of silicate were elucidated.


Aluminum Gallium Arsenide Phosphide (AlGaAsP) for Low-Cost High-Efficiency Solar Cells


III-V/Si epitaxial tandems with a top layer of about 1.7 eV gallium arsenide phosphide (GaAsP) cell process a stable power conversion with efficiencies more than the fundamental limit of silicon single-junction sells. The fact is, III-V/Si epitaxial tandems are disadvantageous because of their limitations the least carrier diffusion length in the top cell with the consequent reduction in the density of short circuit current and efficiencies. Even though the conventional approaches require the dislocation density in III-V/Si tandems must be lowered for the purpose of efficiency boosting, the latest finding concerning increasing the efficiency shows that growth sequence and heterointerface design turn out to play a considerable role in minimizing recombination losses.


Recent Posts

Future Communication with 5G Technology and Advanced Materials

Preserving History with the Power of Graphene
Future Communication with 5G Technology and Advanced Materials 5G technology opens the doors to a new era in communication with faster connection speeds, low late...

5G technology opens the doors to a new era in communication with faster connection speeds, low latency and wide coverage. This new generation technology enables important applications in many sectors...

​Graphite Applications on Anti-friction Coatings

Preserving History with the Power of Graphene
​Graphite Applications on Anti-friction Coatings Graphite is said to be known as one of the forms of carbon present in usually crystalline form. Thi...

Graphite is said to be known as one of the forms of carbon present in usually crystalline form. This too has various types and varieties in which graphite can be exhibited. However, recently it has c...

Cuprous (Copper) Oxide Properties and Applications

Preserving History with the Power of Graphene
Cuprous (Copper) Oxide Properties and Applications Cuprous oxide is also commonly known as copper oxide which is basically an inorganic compound compr...

Cuprous oxide is also commonly known as copper oxide which is basically an inorganic compound comprising of copper and oxygen. It has some excellent properties that enable it to surpass a lot of copp...

Cellulose Nanocrystals (CNC), Applications and Properties

Preserving History with the Power of Graphene
Cellulose Nanocrystals (CNC), Applications and Properties Cellulose is a very abundant polymer naturally available as it is a vital component present in vari...

Cellulose is a very abundant polymer naturally available as it is a vital component present in various plant cell walls. Besides, cellulose nanocrystals (CNC) also found in every other species all of...

Ketjen Black Applications As a Superconductor

Preserving History with the Power of Graphene
Ketjen Black Applications As a Superconductor Ketjen black is basically a conductive agent and conductive agents are usually used to make sure th...

Ketjen black is basically a conductive agent and conductive agents are usually used to make sure that the electrode possesses good charge and discharge performance. So ketjen black is responsible for...

​7 Reasons to Why Fullerenes are Growing Market

Preserving History with the Power of Graphene
​7 Reasons to Why Fullerenes are Growing Market Fullerene is a carbon allotrope consist of carbon atoms attached via single or double bonds.These m...

Fullerene is a carbon allotrope consist of carbon atoms attached via single or double bonds.These molecules have rich characteristics and potentially strong properties which enable them to work effec...

Molybdenum Disulfide (MoS2) Properties and Applications

Preserving History with the Power of Graphene
Molybdenum Disulfide (MoS2) Properties and Applications Molybdenum disulfide, also known as MoS2, is one of the best materials initially belonging to the t...

Molybdenum disulfide, also known as MoS2, is one of the best materials initially belonging to the transition metals.Its structure is unique hence all the properties it possesses are unique.  The buil...

From Graphene to the New Teflon

Preserving History with the Power of Graphene
From Graphene to the New Teflon Graphene is one of the most used materials in today's world and with all the exceptions that it is ...

Graphene is one of the most used materials in today's world and with all the exceptions that it is being used, it is being proven as one of the best materials for almost all industries.  Ever since i...

​Use of Graphene In The Textile Industry, Examples From The Market And Its Future

Preserving History with the Power of Graphene
​Use of Graphene In The Textile Industry, Examples From The Market And Its Future Graphene is known as a carbon allotrope in the industry as it comprises carbon atoms that are put t...

Graphene is known as a carbon allotrope in the industry as it comprises carbon atoms that are put together in the form of a lattice. Graphene is a highly necessary product in today's world as it is s...

IR Coating Technology and Applications

Preserving History with the Power of Graphene
IR Coating Technology and Applications IR coating technology is used for the optical coatings that perform their functions at a very large...

IR coating technology is used for the optical coatings that perform their functions at a very large scale. This includes UV wavelengths which are both short and long too. A lot of comprehensive studi...

Silicon Dioxide in Battery Applications

Preserving History with the Power of Graphene
Silicon Dioxide in Battery Applications Silicon dioxide is a promising material for next generation battery technologies because of its hig...

Silicon dioxide is a promising material for next generation battery technologies because of its high capacity and abundance. Especially Li-ion and Li-S batteries benefit from silicon dioxide and its ...

Properties of ​Ketjen Black as a Superconductor

Preserving History with the Power of Graphene
Properties of ​Ketjen Black as a Superconductor Ketjen black is basically a conductive agent and conductive agents are usually used to make sure th...

Ketjen black is basically a conductive agent and conductive agents are usually used to make sure that the electrode possesses good charge and discharge performance. So ketjen black is responsible for...

MoS2 Applications on Anti-friction Coatings

Preserving History with the Power of Graphene
MoS2 Applications on Anti-friction Coatings MoS2 is basically the chemical formula of molybdenum disulfide which is a compound known to be a tr...

MoS2 is basically the chemical formula of molybdenum disulfide which is a compound known to be a transition metal dichalcogenide having a blackish and silvery appearance. MoS2 is one of the categori...

​How to Sustainably Produce Nano Clays

Preserving History with the Power of Graphene
​How to Sustainably Produce Nano Clays Nanoclays, with their unique layered structure and nanometric size, are transforming industries by ...

Nanoclays, with their unique layered structure and nanometric size, are transforming industries by enhancing the performance of materials in packaging, automotive, and environmental engineering.  Th...

​10 Uses of Calcium Oxide in Daily Life

Preserving History with the Power of Graphene
​10 Uses of Calcium Oxide in Daily Life Calcium oxide is the chemical combination of calcium and oxygen subsequently forming a product that...

Calcium oxide is the chemical combination of calcium and oxygen subsequently forming a product that is rich in its characteristics and has an excellent set of properties that enable it to perform var...

​Cubic Boron Nitride Nanopowders: The New Diamond, Properties, and Applications

Preserving History with the Power of Graphene
​Cubic Boron Nitride Nanopowders: The New Diamond, Properties, and Applications Boron nitride is a chemical compound consisting of nitrogen and boron, having the chemical formula ...

Boron nitride is a chemical compound consisting of nitrogen and boron, having the chemical formula BN. It has various forms but the most common one is the cubic boron nitride form. It is actually a t...